

DPP No. 49

Total Marks : 25

Max. Time : 26 min.

3 min.)

5 min.)

3 min.)

M.M., Min.

[12, 12]

[4, 5]

[9, 9]

Topics : Electrostatics, Kinematics, Current Electrisity, Center of Mass, Newton's Law of Motion

Type o Single Subje Compi	of Questions e choice Objective ('–1' negative marking) Q.1 to Q.4 ctive Questions ('–1' negative marking) Q.5 rehension ('–1' negative marking) Q.6 to Q.8	(3 marks, (4 marks, (3 marks,			
1.	There exists a uniform electric field in the space as shown. Four poin A, B, C and D are marked which are equidistant from the origin. If V_A, V_B, V_C and V_D are their potentials respectively, then				

2. The displacement time graphs of two bodies A and B are shown in figure. The ratio of velocity of A, v_A to velocity of B, v_B is :

(A)
$$\frac{1}{\sqrt{3}}$$
 (B) $\sqrt{3}$
(C) $\frac{1}{3}$ (D) 3

3. In the circuit shown, the galvanometer shows zero current. The value of resistance R is :

(Α) 1 Ω	(B) 2 Ω
(C) 4 Ω	(D) 9 Ω

4. A disc of mass 'm' and radius R is free to rotate in horizontal plane about a vertical smooth fixed axis passing through its centre. There is a smooth

groove along the diameter of the disc and two small balls of mass $\frac{m}{2}$ each

are placed in it on either side of the centre of the disc as shown in fig. The disc is given initial angular velocity ω_0 and released. The angular speed of the disc when the balls reach the end of disc is :

(A)
$$\frac{\omega_0}{2}$$
 (B) $\frac{\omega_0}{3}$ (C) $\frac{2\omega_0}{3}$

5. A small block A is placed on a smooth inclined wedge B which is placed on a horizontal smooth surface. B is fixed and A is released from top of B. A slide down along the incline and reaches bottom in time t₁. In second case A is released from top of B, but B is also free to move on horizontal surface. The block A takes t₂ time to reach bottom. Without actually calculating the values of t₄ and t₅ find which is greater.

COMPREHENSION

A car battery with a 12 V emf and an internal resistance of 0.04 Ω is being charged with a current of 50 A.

CLICK HERE

6.	The potential difference V across the terminals of the battery are				
	(A) 10 V	(B) 12 V	(C) 14 V	(D) 16 V	
7.	The rate at which ene	rgy is being dissipated a	as heat inside the battery	/ is :	

(A) 100 W (B) 500 W (C) 600 W (D) 700 W

8.The rate of energy conversion from electrical form to chemical form is :
(A) 100 W(B) 500 W(C) 600 W(D) 700 W

🕀 www.studentbro.in

Answers Key

1.	(B)	2.	(C)	3.	(A)	4.	(B)
5.	$t_{1} > t_{2}$	6.	(C)	7.	(A)	8.	(C)

Hints & Solutions

1. Four lines, perpendicular to lines of electric field and passing through A, B, C and D are drawn. These are equipotential lines. As potential decreases in the direction of electric field, therefore $V_A > V_B > V_D > V_C$

2. For A,
$$\frac{ds}{dt} = V_A = \frac{1}{\sqrt{3}}$$

For B,
$$\frac{ds}{dt} = V_B = \sqrt{3}$$

$$\frac{V_{A}}{V_{B}} = \frac{1}{3}$$

If pot. drop between A and B is also 2V, then no currrent will pass through the gelvanomter.

Pot. drop across R = $\left(\frac{12}{R+5}\right)$ R = 2 12 R = 2R + 10 R = 1 Ω

Get More Learning Materials Here : 🗾

4. Let the angular speed of disc when the balls reach the end be $\omega.$

From conservation of angular momentum

$$\frac{1}{2} \mathbf{m} \mathbf{R}^2 \omega_0 = \frac{1}{2} \mathbf{m} \mathbf{R}^2 \omega + \frac{\mathbf{m}}{2} \mathbf{R}^2 \omega + \frac{\mathbf{m}}{2} \mathbf{R}^2 \omega$$
or $\omega = \frac{\omega_0}{3}$

- 5. In second case due to psuedo force acting on the block its acceleration will be more as compared to the first case. Hence $t_1 > t_2$ Ans. $t_1 > t_2$
- 6. V = E + ir (during charging) = 14 V.
- 7. $P = I^2 r$ (Due to internal resistance) = $50^2 \times 4 \times 10^{-2} = 100 W$
- 8. Rate of charging = E.I.
 = 12 V. 50 A = 600 W

